IBM Watson Cloud Robot

 

IBM Watson Cloud Robot
Screenshot 2017-01-16 21.54.18.png
Screenshot 2016-12-31 16.28.11.png
ControllingButtons.jpeg
Screenshot 2017-01-02 11.03.04.png
IBM Cloud Robot.jpeg
Screenshot 2017-01-02 11.02.53.png
Screenshot 2017-01-02 11.00.48.png
Screenshot 2017-01-02 20.23.21.png
Screenshot 2017-01-02 20.28.36.png
Screenshot 2017-01-03 17.56.47.png
5870d98f3dd33aeaf7001a9e.jpeg

 

Motivation

I work as a robotics teacher in Sydney. I want to introduce my AI robot to my students in my class next month. In addition, I’m joining NASA Open Innovation Initiative (also known as NASA Space Apps Challenge) with my AI robot to measure the space environment such as temperature, humidity, and pressure. So, I’m so excited!!

Introduction

The IBM Watson Cloud Robot can recognize a human face, voice, and text like a human. The robot clearly recognized the celebrity (Elon Musk) and who he was. Also, it recognized my voice & any text. (YouTube)

This instructable will cover the basic steps that you need to follow to get started with open sources such as Watson nodes (Visual Recognition V3, Speech To Text, Text To Speech) for IBM Bluemix, Node-RED, MQTT v3.1. MQTT(Message Queueing Telemetry Transport) is a Machine-To-Machine(M2M) or Internet of Things (IoT) connectivity protocol that was designed to be extremely lightweight and useful when low battery power consumption and low network bandwidth is at a premium. It was invented in 1999 by Dr. Andy Stanford-Clark and Arlen Nipper and is now an Oasis Standard .

– How to tune PID gains of Node-RED with MQTT on Raspberry Pi:

http://www.instructables.com/id/PID-Control-for-CPU-Temperature-of-Raspberry-Pi/

– How to use the Bluemix platform (Docs)
https://console.ng.bluemix.net/docs/

– Enclosed my additional material (Pi-Scratch_Robot_GPIO.sb) for kid education at Download List

(Functions: Driving motors & Taking a picture on Rasberry Pi)

Step 1: Table of Contents

Step 0: Introduction

Step 1: Table of Contents

Step 2: Bill of Materials

Step 3: Assembly (Wiring & Soldering)

Step 4: Programming NodeRED on Raspberry Pi2

Step 5: Setting up MQTT v3.1 on Raspberry Pi2

Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2

Step 7: Adding & Setting up PID node, Dashboard on Raspberry Pi2

Step 8: Configuring the PS3 EYE camera with microphone

Step 9: Configuring GPS Sensor

Step 10: Using a dashboard for the robot

Step 11: Tuning PID controller

Step 12: (Optional) Programing a Pi-Scratch Robot

Step 13: Download list

Step 14: List of references

Step 15: Version Note

Step 2: Bill of Materials

Step 3: Assembly (Wiring & Soldering)

Assembly (Wiring & Soldering)
Screenshot 2017-01-02 15.04.09.png
586a327a8852ddcf530000be.jpeg

Step 4: Programming NodeRED on Raspberry Pi2

Programming NodeRED on Raspberry Pi2
5869dae765d221290a000785.jpeg
Screenshot 2016-12-31 16.19.05.png
586a34278ae43be54f00029b.jpeg
Screenshot 2017-01-02 22.13.51.png
Screenshot 2016-12-31 16.19.58.png
Screenshot 2016-12-31 16.21.14.png
Screenshot 2016-12-31 16.21.23.png
Screenshot 2016-12-31 16.21.36.png
Screenshot 2016-12-31 16.21.57.png
587de7568080cfd9830014dc.jpeg

How to start Node-RED on web-browser.

(1) Write down command shown below to a terminal window.

node-red-start

(2) You can find an IP address as below. ‘Once Node-RED has started, point a browser at http://169.254.170.40:1880’ (It depends on your IP address)

(3) Open your web browser.

(4) Copy the IP address and paste on web-browser.

(5) It will display a visual editor of Node-RED on web-browser.

(6) You can start coding with visual editor on web-browser.

(7) Try dragging & dropping any node from the left-hand side to right-hand side. It’s really easy to code. ( You can conveniently use the visual editor offline as well as online. ) Download all files at Download list. (1) Click the number (1) at the right-hand side corner shown in NodeRED on web-browser. (2) Click the Import button on the drop down menu. (3) Open the Clipboard shown in the above 1st picture. (4) Lastly, paste the given JSON format text of ‘____ver0.1.txt’ (Download List) in Import nodes editor.

Step 5: Setting up MQTT v3.1 on Raspberry Pi2

Setting up MQTT v3.1 on Raspberry Pi2
586a2d4f8080cffb3e001058.jpeg
586a353def665a0a630004ce.jpeg

There are two options such as using eclipse paho, installing a mosquitto sever. Also, you can use (1) option instead of (2) opption.

(1) Using “iot.eclipse.org”.

Click each MQTT node and Type it.

iot.eclipse.org

(2) Setting up MQTT v3.1 on Raspberry Pi2

This message broker(Mosquitto) is supported by MQTT v3.1 and it is easily installed on the Raspberry Pi and somewhat less easy to configure. Next we step through installing and configuring the Mosquitto broker. We are going to install & test the MQTT “mosquitto” on terminal window. Click that.

http://www.instructables.com/id/PID-Control-for-CPU-Temperature-of-Raspberry-Pi/

Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2

Checking your NodeRED codes with MQTT on Raspberry Pi2

When you will use the JSON format of the ‘NodeRED_Text_files_ver0.1.txt’ (Download List) on Node-RED, it’s automatically set up & coded each data. I have already set up the each data in each node.

(1) Click each node.

(2) Check information inside each node has been prefilled.

(3) Please don’t change the set data. (The above can be customized for more advanced users.)

Step 7: Adding & Setting up PID node, Dashboard on Raspberry Pi2

Adding & Setting up PID node, Dashboard on Raspberry Pi2
Screenshot 2017-01-17 20.45.01.png
Screenshot 2016-12-31 17.04.31.png
Screenshot 2016-12-31 17.06.38.png
Screenshot 2016-12-31 17.05.40.png
Screenshot 2016-12-31 17.05.46.png
Screenshot 2016-12-31 17.06.08.png

Searching the Nodes

Node-RED comes with a core set of useful nodes, but there are a growing number of additional nodes available for installing from both the Node-RED project as well as the wider community. You can search for available nodes in the Node-RED library or on the npm repository .

  • For example, we are going to search ‘node-red-node-pidcontrol’ at the npm web. Click here .
  • Then, we are going to install npm package, node-red-node-pidcontrol, node-red-dashboard on Raspberry Pi.

To add additional nodes you must first install the npm tool, as it is not included in the default installation. The following commands install npm and then upgrade it to the latest 2.x version.

sudo apt-get update
sudo apt-get install npm
sudo npm install -g npm@2.x
hash -r
cd /home/pi/.node-red
  • For example, ‘npm install node-red-{example node name}’
  • Copy the ‘npm install node-red-node-pidcontrol’ from the npm web. Paste it on a terminal window.
  • Ex: node-red-node-watson, node-red-contrib-play-audio, node-red-dashboard, node-red-node-pidcontrol
npm  install node-red-node-watson node-red-contrib-play-audio node-red-node-pidcontrol node-red-dashboard

You will need to restart Node-RED for it to pick-up the new nodes.

node-red-stop
node-red-start

Close your web browser and reopen the web browser.

Step 8: Configuring the PS3 EYE camera with microphone

Configuring the PS3 EYE camera with microphone
5869d5dd65d221a62200002b.jpeg
5869d6448080cf495b00030b.jpeg
Screenshot 2017-01-17 20.41.13.png

This Sony PS3 eye USB camera that can achieve up to 187 frames per second can be found for under $8 on Amazon.com that should make it quite a bargain for those wishing to experiment with CV projects. The PlayStation Eye camera for the PS3 is similar to a web camera but can also be used for computer vision and gesture recognition tasks. The PlayStation Eye has been supported by the Linux kernel since the late Linux 2.6 days but with a future update (Linux 3.20 or later given that the 3.19 merge window is closed) will support higher modes.

(1) Install a USB driver on Raspberry Pi.

 sudo apt-get install fswebcam

(2) Take a picture and then check the ‘visionImage.jpg’ file in the /home/pi

(3) Don’t forget to put the Bluemix service credentials for Watson Services such as Visual recognition, Speech to Text, and, Text to Speech. ( How to use the IBM Bluemix platform: https://console.ng.bluemix.net/docs/ )

(4) Make an image file (jpg) server for every boot.

<p>cd /etc/xdg/autostart/</p>
<p>sudo nano imageFileServer.desktop</p>

Type the description below or put the ‘imageFileServer.desktop’ file into /etc/xdg/autostart/ folder.

[Desktop Entry]
<p>Type=Application <br>Name=imageFileServer 
Comment=Start an image file server 
NoDisplay=false 
Exec=cd /home/pi 
Exec=python -m SimpleHTTPServer 7000</p>

Check the visionImage.jpg on the web browser.

http://169.254.62.80:7000/visionImage.jpg

Step 9: Configuring GPS Sensor

Configuring GPS Sensor
5869d8673dd33afb53000db3.jpeg
5869d8d88ae43b9c8f001508.jpeg
5869d986ef665a834c001426.jpeg
586cac5e8080cfca9500038e.jpeg

How to set the serial configuration for GPS module.

https://learn.adafruit.com/adafruit-ultimate-gps-on-the-raspberry-pi/using-uart-instead-of-usb

– Reference:

Adafruit Ultimate GPS & Download PDF file.

Tip: You should experiment the GPS sensor outside because this does not work inside at home. You would see an error signal. So, I made an extra node for home GPS test.

(1) Edit /boot/cmdline.txt

Next, enter the following command from the command line:

sudo nano /boot/cmdline.txt

And change:

dwc_otg.lpm_enable=0 console=ttyAMA0,115200 kgdboc=ttyAMA0,115200 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

to:

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 elevator=deadline rootwait

(eg, remove console=ttyAMA0,115200 and if there, kgdboc=ttyAMA0,115200)

Note you might see console=serial0,115200 or console=ttyS0,115200 and should remove those parts of the line if present.

(2) Edit /etc/inittab

(Raspbian Wheezy only)

From the command prompt enter the following command:

sudo nano /etc/inittab

And change:

#Spawn a getty on Raspberry Pi serial line

T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

to:

#Spawn a getty on Raspberry Pi serial line

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100

That is, add a # to the beginning of the line!

(3) Only Raspbian Jessie

For the Raspberry Pi 1 or 2 (but NOT the 3!) Run the following two commands to stop and disable the tty service:

sudo systemctl stop serial-getty@ttyAMA0.service

sudo systemctl disable serial-getty@ttyAMA0.service

However for the Raspberry Pi 3 you need to use the /dev/ttyS0 port since that is what is normally connected to the GPIO serial port pins. Use these two commands instead:

sudo systemctl stop serial-getty@ttyS0.service

sudo systemctl disable serial-getty@ttyS0.service

(4) Raspberry Pi 3 Only

For the Raspberry Pi 3

You need to explicitly enable the serial port on the GPIO pins. The reason for this is a change with the Pi 3 to use the hardware serial port for Bluetooth and instead use a slightly different software serial port for the GPIO pins. A side effect of this change is that the serial port will actually change speed as the Pi CPU clock throttles up and down–this will unfortunately cause problems for most serial devices like GPS receivers!

Luckily there’s an easy fix detailed in this excellet blog post to force the Pi CPU into a fixed frequency which prevents speed changes on the serial port. The Pi might not perform as well but it will have a stable serial port speed.

To make this change edit the /boot/config.txt file by running:

sudo nano /boot/config.txt

At the very bottom of the file add this on a new line:

enable_uart=1

ave the file (press Ctrl-O, then enter) and exit (press Ctrl-X). You’re all set!

(5) Reboot your Pi

sudo reboot

(6) Restart GPSD with HW UART

Restart gpsd and redirect it to use HW UART instead of the USB port we pointed it to earlier. Simply entering the following two commands.

For the Raspberry Pi 1 or 2 (but NOT the 3!) run these commands:

sudo killall gpsd
sudo gpsd /dev/ttyAMA0 -F /var/run/gpsd.sock

And for the Raspberry Pi 3 run these commands to use the different serial port:

sudo killall gpsd
sudo gpsd /dev/ttyS0 -F /var/run/gpsd.sock

As with the USB example, you can test the output with:

cgps -s

Step 10: Using a dashboard for the robot

Using a dashboard for the robot
Screenshot 2017-01-04 18.02.05.png
Screenshot 2017-01-04 18.02.13.png
Screenshot 2017-01-04 18.02.24.png
Screenshot 2017-01-04 18.04.54.png
Screenshot 2017-01-04 18.05.07.png
Screenshot 2017-01-04 18.05.23.png
Screenshot 2017-01-04 18.06.03.png
Screenshot 2017-01-04 18.06.57.png
Screenshot 2017-01-04 18.07.15.png
Screenshot 2017-01-04 18.10.54.png
Screenshot 2017-01-04 18.16.39.png
Screenshot 2017-01-04 18.16.47.png
Screenshot 2017-01-04 18.17.00.png

The dashboard is a visual UI tool like gauge, chart. There is a basic tutorial of a Node-RED dashboard using ‘node-red-dashboard’

http://developers.sensetecnic.com/article/a-node-red-dashboard-using-node-red-contrib-ui/

Step 11: Tuning PID controller

Tuning PID controller
2.jpg

http://www.instructables.com/id/PID-Control-for-CPU-Temperature-of-Raspberry-Pi/

My instructable is really helpful to tune the PID gains for your system.

This is big job to adjust the pid gains. Use my source(node red) from the Download List.

Step 12: (Optional) Programing a Pi-Scratch Robot

(Optional) Programing a Pi-Scratch Robot
Screenshot 2017-01-09 22.06.46.png
Screenshot 2017-01-09 22.07.34.png
Screenshot 2017-01-09 22.07.42.png
Screenshot 2017-01-09 22.07.48.png
Screenshot 2017-01-09 22.07.54.png
Screenshot 2017-01-09 22.08.02.png

This part is an optional part for kid educational purpose. So, I developed it for my students in Sydney.

Let’s have fun with kids!!

Step 15: Version Note

————————————————————————–

Version rules

  • VerX.Y
    • X: Changed
    • Y: Added
    • (Ex 01) file__Ver0.2 : added something
    • (Ex 02) file__Ver1.0 : changed something

————————————————————————–

  • 06_Voice_Part_Ver0.2.txt : added a Watson Conversation (17 Jan 2017)

 

 

 

 

Advertisements

PID Control For BBQ Bot

[ PID Control For BBQ Bot ]

PID Control For BBQ Bot
Screenshot 2017-01-03 10.04.34.png
Cover.png
58708d198080cf0cfe000e75.jpeg
output02.jpeg
586d0854ef665a79cd000133.jpeg
02Graph_BBQsmokerBot.jpeg
Graph_BBQsmokerBot.jpeg
Screenshot 2016-12-20 22.48.38.png
Screenshot 2017-01-06 18.50.23.png

Introduction

The secret is in the smart BBQ smoker. It could do to turn the finicky art of smoking meat into a controlled, semiautomated science. It uses a node-RED of PID (proportional-integral-derivative) controller , a Raspberry Pi2 with ESP8266-01, and a fan to regulate its own temperature & humidity, automatically producing an ideal slow-and-low burn. The science of smoke indirect heat cooks the brisket “slow and low,” providing enzymes the optimal amount of time to turn tough collagen into melt-in-your-mouth gelatin. Wood adds flavor during the first few hours: Its lignins denature as it burns, releasing tasty smoky compounds. Too much heat can leave you with shoe leather, so controlling temperature is paramount.

MQTT(Message Queueing Telemetry Transport) is a Machine-To-Machine(M2M) or Internet of Things (IoT) connectivity protocol that was designed to be extremely lightweight and useful when low battery power consumption and low network bandwidth is at a premium. It was invented in 1999 by Dr. Andy Stanford-Clark and Arlen Nipper and is now an Oasis Standard.

https://www.oasis-open.org/news/announcements/mqtt-version-3-1-1-becomes-an-oasis-standard

– How to tune PID gains of Node-RED with MQTT on Raspberry Pi

http://www.instructables.com/id/PID-Control-for-CPU-Temperature-of-Raspberry-Pi/

– How to make a client of ESP8266-01 by Arduino IDE (By knolleary)

https://github.com/knolleary/pubsubclient

– How to use the Bluemix platform (Docs)

https://console.ng.bluemix.net/docs/

– ESP Chips(8266,32,8285,8095) Docs

https://espressif.com/en/support/download/documents

Step 1: Table of Contents

Step 0: Introduction

Step 1: Table of Contents

Step 2: Bill of Materials

Step 3: Programming ESP8266-01 with DHT11 Sensor on Arduino IDE

Step 4: Programming NodeRED on Raspberry Pi2

Step 5: Setting up aluminum foil furnace with a circuited fan with Raspberry Pi

Step 6: Setting up MQTT v3.1 on Raspberry Pi2

Step 7: Checking your NodeRED codes with MQTT on Raspberry Pi2

Step 8: Adding & Setting up PID node, Dashboard on Raspberry Pi2

Step 9: Using a dashboard for PID control

Step 10: Tuning PID controller

Step 11: Download list

Step 12: List of references

Step 2: Bill of Materials

  • Raspberry Pi3 Kit X 1ea
  • ESP8266-01 X 1ea
  • ESP8266 Total Set X 1ea
  • AMS1117 board X 1ea
  • Raspberry Pi’s box with Fan X 1ea
  • PNP A1015 Transistor X 1ea
  • Adjustable resistor(102) X 1ea
  • Jumper wires(1m) X 1ea
  • Wifi dongle X 1ea
  • Android smartphone’s portable battery X 1ea
  • Aluminum foil dish X 4ea
  • Nod-RED software X 1ea
    • Free open source
    • Use the version pre-installed in Raspbian Jessie image since November 2015
    • Installation guide
  • MQTT v3.1 software X 1ea
    • Free open source
    • Installation guide includes at the Step
  • Places to buy from?
    • Element14
    • Adafruit
    • DigiKey
    • Sparkfun
    • eBay
    • Amazon

Step 3: Programming ESP8266-01 with DHT11 Sensor on Arduino IDE

Programming ESP8266-01 with DHT11 Sensor  on Arduino IDE
586b0ab28852ddac5d0011fb.jpeg

Reference: Arduino Client for MQTT By knolleary

https://github.com/knolleary/pubsubclient

I mixed my code with above the pubsubclient’s code.

Step 4: Programming NodeRED on Raspberry Pi2

Programming NodeRED on Raspberry Pi2
5881d1258852ddb2ec001a04.jpeg

How to start Node-RED on web-browser.

(1) Write down command shown below to a terminal window.

node-red-start

(2) You can find an IP address as below. ‘Once Node-RED has started, point a browser at http://169.254.170.40:1880&#8217; (It depends on your IP address)

(3) Open your web browser.

(4) Copy the IP address and paste on web-browser.

(5) It will display a visual editor of Node-RED on web-browser.

(6) You can start coding with visual editor on web-browser.

(7) Try dragging & dropping any node from the left-hand side to right-hand side. It’s really easy to code. ( You can conveniently use the visual editor offline as well as online. ) Download the ‘__ver0.1.txt’ file. (1) Click the number (1) at the right-hand side corner shown in NodeRED on web-browser. (2) Click the Import button on the drop down menu. (3) Open the Clipboard shown in the above 1st picture. (4) Lastly, paste the given JSON format text of ‘____ver0.1.txt’ in Import nodes editor.

Step 5: Setting up aluminum foil furnace with a circuited fan with Raspberry Pi

Setting up aluminum foil furnace with a circuited fan with Raspberry Pi
5869fdcd8ae43be54f000226.jpeg
586d0c543dd33a4de0000337.jpeg
586a1235e02ad6ffcf003fc7.jpeg
586b27cb8080cfd3d7003115.jpeg
586b28e49bad4baa540019e0.jpeg
586adf1465d221290a000c8e.jpeg

Step 6: Setting up MQTT v3.1 on Raspberry Pi2

Setting up MQTT v3.1 on Raspberry Pi2
58708e21ef665a25b4000ebf.jpeg

There are two options such as using eclipse paho, installing a mosquitto sever. Also, you can use (1) option instead of (2) opption.

(1) Using “iot.eclipse.org”.
Click each MQTT node and Type it.

 iot.eclipse.org

(2) Setting up MQTT v3.1 on Raspberry Pi2
This message broker(Mosquitto) is supported by MQTT v3.1 and it is easily installed on the Raspberry Pi and somewhat less easy to configure. Next we step through installing and configuring the Mosquitto broker. We are going to install & test the MQTT “mosquitto” on terminal window. Click that.

http://www.instructables.com/id/PID-Control-for-CPU-Temperature-of-Raspberry-Pi/

Step 7: Checking your NodeRED codes with MQTT on Raspberry Pi2

Checking your NodeRED codes with MQTT on Raspberry Pi2

When you will use the JSON format of the ‘_____ver0.1.txt’ on Node-RED, it’s automatically set up & coded each data. I have already set up the each data in each node.

(1) Click each node.

(2) Check information inside each node has been prefilled.

(3) Please don’t change the set data. (The above can be customized for more advanced users.)

Step 8: Adding & Setting up PID node, Dashboard on Raspberry Pi2

Adding & Setting up PID node, Dashboard on Raspberry Pi2
Screenshot 2016-12-31 17.05.40.png
Screenshot 2016-12-31 17.06.08.png

Searching the Nodes

Node-RED comes with a core set of useful nodes, but there are a growing number of additional nodes available for installing from both the Node-RED project as well as the wider community. You can search for available nodes in the Node-RED library or on the npm repository .

  • For example, we are going to search ‘node-red-node-pidcontrol’ at the npm web. Click here .
  • Then, we are going to install npm package, node-red-node-pidcontrol, node-red-dashboard on Raspberry Pi.

To add additional nodes you must first install the npm tool, as it is not included in the default installation. The following commands install npm and then upgrade it to the latest 2.x version.

sudo apt-get update
sudo apt-get install npm
sudo npm install -g npm@2.x
hash -r
cd /home/pi/.node-red
  • For example, ‘npm install node-red-{example node name}’
  • Copy the ‘npm install node-red-node-pidcontrol’ from the npm web. Paste it on a terminal window.
  • Ex: node-red-dashboard, and node-red-node-pidcontrol
npm install node-red-node-pidcontrol node-red-dashboard

You will need to restart Node-RED for it to pick-up the new nodes.

node-red-stop
node-red-start

Close your web browser and reopen the web browser.

Step 9: Using a dashboard for PID control

The dashboard is a visual UI tool like gauge, chart. There is a basic tutorial of a Node-RED dashboard using node-red-dashboard. http://developers.sensetecnic.com/article/a-node-red-dashboard-using-node-red-contrib-ui/

Step 10: Tuning PID controller

Tuning PID controller
2.jpg

http://www.instructables.com/id/PID-Control-for-CPU-Temperature-of-Raspberry-Pi/

My instructable could be really helpful to tune the PID gains for your system.
This is big job to adjust the pid gains. Use my source(node red) from the Download List.

A smart gas valve for home safety

[ A smart gas valve for home safety ]

By in raspberry-pi 

 

Screenshot 2016-11-02 05.48.25.png
systemStructure.png
Screenshot 2016-10-25 11.26.56.png
MQTT-Gas-VV_phone.png.PNG
IMG_0198.PNG

Introduction

This instructable will cover the basic steps that you need to follow to get started with open sources such as Node-RED, MQTT v3.1, and Watson NodeRED for IBM Bluemix. MQTT(Message Queueing Telemetry Transport) is a Machine-To-Machine(M2M) or Internet of Things (IoT) connectivity protocol that was designed to be extremely lightweight and useful when low battery power consumption and low network bandwidth is at a premium. It was invented in 1999 by Dr. Andy Stanford-Clark and Arlen Nipper and is now an Oasis Standard.

The different tutorials can cause a great deal of confusion, which is why I have tried to make the easiest setup possible. Specifically, this instructable will cover how to code the Node-RED on Raspberry Pi2 as an MQTT client by connecting to your home wireless network and how to send sensor data. When you finish this project, I suggest you another M2M communication approach.

http://www.instructables.com/id/Smart-JPEG-Camera-for-Home-Security/

Step 1: Table of Contents

  • Step 0: Introduction
  • Step 1: Table of Contents
  • Step 2: Bill of Materials
  • Step 3: Setting up a smart gas valve with Raspberry Pi
  • Step 4: Programming NodeRED on Raspberry Pi2
  • Step 5: Setting up MQTT v3.1 on Raspberry Pi2
  • Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2
  • Step 7: Adding & Setting up IBM Watson, Play-Audio, E-Mail, Twitter, and Twilio
  • Step 8: Adding autostart files for every boot.
  • Step 9: Download list
  • Step 10: List of references

Step 2: Bill of Materials

  • Raspberry Pi2 X 1ea
  • Wifi dongle X 1ea
  • PIR motion sensor X 1ea
  • Android smartphone’s portable battery X 1ea
  • Nod-RED software X 1ea
    • Free open source
    • Use the version pre-installed in Raspbian Jessie image since November 2015
    • Installation guide
  • MQTT v3.1 software X 1ea
    • Free open source
    • Installation guide includes at Step 5
  • NodeRED’s Watson Nodes for IBM Bluemix
    • Text to speech node X 1ea
  • Speaker X 1ea

Step 3: Setting up a smart gas valve with Raspberry Pi

Setting up a smart gas valve with Raspberry Pi
580ee5a94936d4e9150001eb.jpeg
580ee8be937ddb575f0017df.jpeg
IMG_0286.JPG
580eea512e7fb659a400126b.jpeg
IMG_0285.JPG

Assembly steps

(1) Connect the Raspberry Pi2 with a magnetic switch sensor as shown above in the circuit diagram.

(2) Add a pull-up resistor(4.7 k ohm). If you use a really long wire, you could change approximately 1 k ohm. It depends on your environment.

(3) Connect the magnetic switch sensor with raspberry pi.

  • Magnetic sensor <—-> Raspberry Pi2
    • COM — Ground
    • NO — GPIO 18

(4) Assemble the magnetic switch sensor with a gas valve at home.

(The magnetic switch sensor should include an adhesive tape on the base.)

(5) Connect a portable battery with Raspberry Pi2.

(Use any portable battery to connect with the same size connector cable on Raspberry Pi2. )

Step 4: Programming NodeRED on Raspberry Pi2

How to start Node-RED on the web browser.

(1) Write down command shown below to a terminal window.

node-red-start

(2) You can find an IP address as below.

‘Once Node-RED has started, point a browser at http://169.254.170.40:1880

(3) Open your web browser.

(4) Copy the IP address and paste on the web browser.

(5) It will display a visual editor of Node-RED on the web browser.

(6) You can start coding with visual editor on the web browser.

(7) Try dragging & dropping any node from the left-hand side to right-hand side. It’s really easy to code.

( You can conveniently use the visual editor offline as well as online. )

Download the ‘SmartGasValve_NodeRED.txt’ file.

(1) Click the number (1) at the right-hand side corner shown in NodeRED on the web browser.

(2) Click the Import button on the drop down menu.

(3) Open the Clipboard shown in the above 1st picture.

(4) Lastly, paste the given JSON format text of ‘SmartGasValve_NodeRED.txt’ in Import nodes editor.

Step 5: Setting up MQTT v3.1 on Raspberry Pi2

Setting up MQTT v3.1 on Raspberry Pi2
Screenshot 2016-10-20 22.53.56.png
Screenshot 2016-10-20 22.56.15.png
Screenshot 2016-10-20 22.50.40.png
580eef472e7fb659a4001280.jpeg

Setting up MQTT v3.1 on Raspberry Pi2

This message broker(Mosquitto) is supported by MQTT v3.1 and it is easily installed on the Raspberry Pi and somewhat less easy to configure. Next, we step through installing and configuring the Mosquitto broker.

We are going to install & test the MQTT “mosquitto” on a terminal window.

curl -O http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
sudo apt-key add mosquitto-repo.gpg.key
rm mosquitto-repo.gpg.key
cd /etc/apt/sources.list.d/
sudo curl -O http://repo.mosquitto.org/debian/mosquitto-jessie.list
sudo apt-get update

Next install the broker and command line clients:

  • mosquitto – the MQTT broker (or in other words, a server)
  • mosquitto-clients – command line clients, very useful in debugging
  • python-mosquitto – the Python language bindings
sudo apt-get install mosquitto mosquitto-clients python-mosquitto

As is the case with most packages from Debian, the broker is immediately started. Since we have to configure it first, stop it.

sudo /etc/init.d/mosquitto stop

Now that the MQTT broker is installed on the Pi we will add some basic security.

Create a config file:

cd /etc/mosquitto/conf.d/
sudo nano mosquitto.conf

Let’s stop anonymous clients connecting to our broker by adding a few lines to your config file. To control client access to the broker we also need to define valid client names and passwords. Add the lines:

allow_anonymous false
password_file /etc/mosquitto/conf.d/passwd
require_certificate false

Save and exit your editor (nano in this case).

From the current /conf.d directory, create an empty password file:

sudo touch passwd

We will use the mosquitto_passwd tool to create a password hash
for user pi:

sudo mosquitto_passwd -c /etc/mosquitto/conf.d/passwd pi

You will be asked to enter your password twice. Enter the password you wish to use for the user you defined.

Testing Mosquitto on Raspberry Pi

Now that Mosquitto is installed we can perform a local test to see if it is working:

Open three terminal windows. In one, make sure the Mosquitto broker is running:

mosquitto

In the next terminal, run the command line subscriber:

mosquitto_sub -v -t 'topic/test'

You should see the first terminal window echo that a new client is connected.

In the next terminal, run the command line publisher:

mosquitto_pub -t 'topic/test' -m 'helloWorld'

You should see another message in the first terminal window saying another client is connected. You should also see this message in the subscriber terminal:

topic/test helloWorld

We have shown that Mosquitto is configured correctly and we can both publish and subscribe to a topic.

  • When you finish testing all, let’s set up below that.
sudo /etc/init.d/mosquitto start

Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2

Checking your NodeRED codes with MQTT on Raspberry Pi2
topicgasvalve.png
topicPW.png
Screenshot 2016-10-20 18.05.26.png
Screenshot 2016-10-20 18.05.11.png
Screenshot 2016-10-20 18.03.05.png

When you have already used the JSON format of the ‘SmartGasValve_NodeRED.txt’ on Node-RED, it’s automatically set up & coded each data. I have already set up the each data in each node.

(1) Click each node.

(2) Check information inside each node has been prefilled.

(3) Please don’t change the set data.

(The above can be customized for more advanced users.)

Step 7: Adding & Setting up IBM Watson, Play-Audio, E-Mail, Twitter, and TwilioAdding & Setting up E-Mail, Twitter, and Twilio

Searching the Nodes

Node-RED comes with a core set of useful nodes, but there are a growing number of additional nodes available for install from both the Node-RED project as well as the wider community.
You can search for available nodes in the Node-RED library or on the npm repository.

  • For example, we are going to search Twilio at the npm web. Click here.
  • Next step, we are going to install Twilio on the raspberry pi.

Installing npm packaged node

To add additional nodes you must first install the npm tool, as it is not included in the default installation. The following commands install npm and then upgrade it to the latest 2.x version.

sudo apt-get update
sudo apt-get install npm
sudo npm install -g npm@2.x
hash -r
cd /home/pi/.node-red
  • For example, ‘npm install node-red-{example node name}’
  • Copy the ‘npm install node-red-node-twilio’ from the npm web. Paste it on terminal.
  • Then, we are going to install both node-red-node-watson and node-red-contrib-play-audio.
npm install node-red-node-twilio

<p>npm install node-red-node-watson node-red-contrib-play-audio</p>
  • You will need to restart Node-RED for it to pick-up the new nodes.
node-red-stop
node-red-start
  • Close your web browser and reopen the web browser.

Step 8: Adding autostart files for every boot.

Adding autostart files for every boot.

How to make an autostart file at every boot.

cd /etc/xdg/autostart/

(If there is no ‘autostart’ folder, make it below)

mkdir autostart
cd autostart
sudo nano flyMosquitto.desktop

Type the below (this will enclose the file) Or Put ‘flyMosquitto.desktop’ file into autostart folder.

[Desktop Entry] 
Type=Application
Name=flyMosquitto
Comment=Fly my mosquitto
Exec=cd /etc/mosquitto/conf.d/
Exec=mosquitto

Make it to autostart the Node-RED at every boot

sudo systemctl enable nodered.service

As shown in the above picture, please check the last line is as below.

23 Oct 06:21:22 – [info] [mqtt-broker:2be4dc46.47a5b4] Connected to broker: mqtt://localhost:1883

This is clearly working as a message broker(Mosquitto) on Raspberry Pi2.

 

 

A smart JPEG camera for home security

By in raspberry-pi    

First Prize IoT Builders Contest 2016 (IBM Watson IoT)

Screenshot 2016-11-05 18.18.12.png
Screenshot 2016-11-05 18.26.44.png
Screenshot 2016-11-05 18.28.35.png
thumb_IMG_0615_1024.jpg
Screenshot 2016-11-04 22.09.36.png
Screenshot 2016-11-04 22.35.22.png
Screenshot 2016-11-05 18.06.44.png
14877793_1118884861498137_1672939215_n.jpg

Introduction

This instructable will cover the basic steps that you need to follow to get started with open sources such as Watson nodes(Visual Recognition V3, Text To Speech) for IBM Bluemix, Node-RED, OpenCV, MQTT v3.1. MQTT(Message Queueing Telemetry Transport) is a Machine-To-Machine(M2M) or Internet of Things (IoT) connectivity protocol that was designed to be extremely lightweight and useful when low battery power consumption and low network bandwidth is at a premium. It was invented in 1999 by Dr. Andy Stanford-Clark and Arlen Nipper and is now an Oasis Standard.

I’ve already published an instructable of the Smart Gas Valve For Safety. In addition, I’m going to communicate between A Smart JPEG Camera and A Smart Gas Valve for M2M Communication by MQTT. Specifically, this instructable will cover how to code the Node-RED on Raspberry Pi2 as a MQTT client by connecting to your home wireless network and how to send sensor data. I will be using A Smart Gas Valve for M2M communication by MQTT.

Step 1: Table of Contents

  • Step 0: Introduction
  • Step 1: Table of Contents
  • Step 2: Bill of Materials
  • Step 3: Setting up the Camera & PIR Sensor with Raspberry Pi
  • Step 4: Programming NodeRED on Raspberry Pi2
  • Step 5: Setting up MQTT v3.1 on Raspberry Pi2
  • Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2
  • Step 7: Programming Python JPEG Camera
  • Step 8: Adding IBM Watson, IBM NoSQL DB, Play-Audio, and Twilio
  • Step 9: Adding autostart files for every boot
  • Step 10: Testing M2M Communication
  • Step 11: (Optional) Using OpenCV
  • Step 12: Download list
  • Step 13: List of references

Step 2: Bill of Materials

  • Wifi dongle X 1ea
  • PIR motion sensor X 1ea
  • Android smartphone’s portable battery X 2ea
  • Nod-RED software X 1ea
    • Free open source
    • Use the version pre-installed in Raspbian Jessie image since November 2015
    • Installation guide
  • MQTT v3.1 software X 1ea
    • Free open source
    • Installation guide includes at Step 5
  • NodeRED’s IBM Watson Nodes for Bluemix
    • Text to speech node X 1ea
    • Visual Recognition X 1ea
  • Speaker X 1ea
  • Minion X 1ea
    • You can easily buy it from eBay.

Step 3: Setting up the Camera & PIR Sensor with Raspberry Pi

Setting up the  Camera & PIR Sensor with Raspberry Pi
Screenshot 2016-10-29 17.50.26.png

Assembly steps for Smart JPEG Camera

(1) Connect the Raspberry Pi2 with a PIR motion sensor as shown above in the circuit diagram.

(2) Connect the PIR motion sensor with Raspberry Pi2.

  • Raspberry Pi2 PIR motion Sensor
    • 5V —————- VCC
    • GND ————- GND
    • GPIO 18 ——– OUT

(4) Assemble carefully the Pi camera with Raspberry Pi2.

(5) Connect a portable battery with Raspberry Pi2. (Use any portable battery to connect with the same size connector cable on Raspberry Pi2. )

Assembly steps for Smart Gas Valve : here

Step 4: Programming NodeRED on Raspberry Pi2

Programming NodeRED on Raspberry Pi2
581db15415be4d4ed700153d.jpeg
581db1e345bceb7607000d17.jpeg
581db2994fbadef11c001536.jpeg
581db31c4936d4c09200053f.jpeg
581db24315be4d1908000c68.jpeg
581db3dd4fbadef11c00153e.jpeg
Screenshot 2016-11-04 08.36.16.png

How to start Node-RED on web-browser.

(1) Write down command shown below to a terminal window. node-red-start

(2) You can find an IP address as below. ‘Once Node-RED has started, point a browser at http://169.254.170.40:1880&#8217; (It depends on your IP address)

(3) Open your web browser.

(4) Copy the IP address and paste on the web browser.

(5) It will display a visual editor of Node-RED on the web browser.

(6) You can start coding with visual editor on the web browser.

(7) Try dragging & dropping any node from the left-hand side to right-hand side. It’s really easy to code. ( You can conveniently use the visual editor offline as well as online. ) Download the ‘SmartGasValve_NodeRED.txt’ file. (1) Click the number (1) at the right-hand side corner shown in NodeRED on the web browser.

(2) Click the Import button on the drop down menu.

(3) Open the Clipboard shown in the above 1st picture.

(4) Lastly, paste the given JSON format text of ‘SmartJPGCameraNoCredits_NodeRED_ver0.1.txt‘ in Import nodes editor.

Step 5: Setting up MQTT v3.1 on Raspberry Pi2

Setting up MQTT v3.1 on Raspberry Pi2
Screenshot 2016-10-25 23.12.34.png
Screenshot 2016-10-25 23.13.03.png
Screenshot 2016-10-25 23.11.12.png
Screenshot 2016-10-25 23.10.09.png

Setting up MQTT v3.1 on Raspberry Pi2

This message broker(Mosquitto) is supported by MQTT v3.1 and it is easily installed on the Raspberry Pi and somewhat less easy to configure. Next, we step through installing and configuring the Mosquitto broker. We are going to install & test the MQTT “mosquitto” on the terminal window.

curl -O http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
sudo apt-key add mosquitto-repo.gpg.key
rm mosquitto-repo.gpg.key
cd /etc/apt/sources.list.d/
sudo curl -O http://repo.mosquitto.org/debian/mosquitto-jessie.list
sudo apt-get update

Next install the broker and command line clients:

  • mosquitto – the MQTT broker (or in other words, a server)
  • mosquitto-clients – command line clients, very useful in debugging
  • python-mosquitto – the Python language bindings
sudo apt-get install mosquitto mosquitto-clients python-mosquitto

As is the case with most packages from Debian, the broker is immediately started. Since we have to configure it first, stop it.

sudo /etc/init.d/mosquitto stop

Now that the MQTT broker is installed on the Pi we will add some basic security.
Create a config file:

cd /etc/mosquitto/conf.d/

sudo nano mosquitto.conf

Let’s stop anonymous clients connecting to our broker by adding a few lines to your config file. To control client access to the broker we also need to define valid client names and passwords. Add the lines:

allow_anonymous false

password_file /etc/mosquitto/conf.d/passwd

require_certificate false

Save and exit your editor (nano in this case).
From the current /conf.d directory, create an empty password file:

sudo touch passwd

We will use the mosquitto_passwd tool to create a password hash for user pi:

sudo mosquitto_passwd -c /etc/mosquitto/conf.d/passwd pi

You will be asked to enter your password twice. Enter the password you wish to use for the user you defined.

Testing Mosquitto on Raspberry Pi

Now that Mosquitto is installed we can perform a local test to see if it is working:
Open three terminal windows. In one, make sure the Mosquitto broker is running:

mosquitto

In the next terminal, run the command line subscriber:

mosquitto_sub -v -t 'topic/test'

You should see the first terminal window echo that a new client is connected.
In the next terminal, run the command line publisher:

mosquitto_pub -t 'topic/test' -m 'helloWorld'

You should see another message in the first terminal window saying another client is connected. You should also see this message in the subscriber terminal:

topic/test helloWorld

We have shown that Mosquitto is configured correctly and we can both publish and subscribe to a topic.
When you finish testing all, let’s set up below that.

sudo /etc/init.d/mosquitto start

Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2

Checking your NodeRED codes with MQTT on Raspberry Pi2
Screenshot 2016-10-25 23.25.14.png
Screenshot 2016-11-05 20.48.11.png
Screenshot 2016-10-25 23.26.11.png
Screenshot 2016-10-25 23.26.28.png
Screenshot 2016-11-05 20.46.30.png

When you have already used the JSON format of the ‘SmartGasValve_NodeRED.txt’ on Node-RED, it’s automatically set up & coded each data. I have already set up the each data in each node.

(1) Click each node.

(2) Check information inside each node has been prefilled.

(3) Please don’t change the set data.

(The above can be customized for more advanced users.)

Step 7: Programming Python JPEG Camera

Programming Python JPEG Camera
Screenshot 2016-10-26 01.35.49.png
Screenshot 2016-10-26 00.46.23.png
Screenshot 2016-10-26 01.35.31.png
14885984_1118885038164786_1036372151_n.jpg

Programming Python JPEG Camera

First of all, you should test the camera module in the terminal window.

raspistill -o test.jpg

You should see the test.jpg in ‘/home/pi’

cd /home/pi
mkdir pythonPir
cd pythonPir
sudo nano pircameraNodeRED.py

Type the below (the enclosed file) Or Put ‘pircameraNodeRED.py’ file into ‘/home/pi/pythonPir’ folder.

import RPi.GPIO as GPIO 
import time
import picamera
import datetime 

timeFormat = 0

GPIO.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.IN)  # For M2M Communication from Gas Valve signal
GPIO.setup(18, GPIO.IN)
camera = picamera.PiCamera()

while True:
        input17 = GPIO.input(17)  #Pin number 17 activates
        input18 = GPIO.input(18)  #Pin number 18 activates
        now = datetime.datetime.now()
        timeFormat = now.strftime("%Y%m%d_%H%M_%S.%s") #To put date and time in images

        if input17 == True or input18 == True:  #If PIR Sensor detects something, the Picamera will take.
                print('Motion_Detected_%s' %timeFormat)
                camera.capture('image_%s.jpg' %timeFormat) #To take a picture

                time.sleep(1) #sleeping time 1 second

When you finish typing, you should press the keys ‘Control‘ + ‘x‘ and press ‘y‘ to save this file.

Making an image file server

cd /home/pi
mkdir camserver
sudo nano requirements.txt

Type the below (the enclosed file) Or Put ‘requirements.txt’ file into ‘/home/pi/camserver’ folder.

numpy==1.10.1
websocket-client==0.35.0
websocket-server==0.4
ibmiotf==0.2.3
pip install --user -r requirements.txt

Execute an image file server in /home/pi/ below.

cd /home/pi
python -m SimpleHTTPServer 7000

Step 8: Adding IBM Watson, IBM NoSQL DB, Play-Audio, and Twilio

Adding IBM Watson, IBM NoSQL DB, Play-Audio, and Twilio
Screenshot 2016-11-04 08.35.52.png
Screenshot 2016-11-04 08.36.16.png
Screenshot 2016-11-04 08.33.28.png
Screenshot 2016-11-04 08.35.43.png

Searching the Nodes

Node-RED comes with a core set of useful nodes, but there are a growing number of additional nodes available for installing from both the Node-RED project as well as the wider community. You can search for available nodes in the Node-RED library or on the npm repository.

  • For example, we are going to search Twilio at the npm web. Click here.
  • Then, we are going to install Twilio on Raspberry pi.

Installing npm packaged node

To add additional nodes you must first install the npm tool, as it is not included in the default installation. The following commands install npm and then upgrade it to the latest 2.x version.

sudo apt-get update
sudo apt-get install npm
sudo npm install -g npm@2.x
hash -r
cd /home/pi/.node-red
  • For example, ‘npm install node-red-{example node name}’
  • Copy the ‘npm install node-red-node-twilio’ from the npm web. Paste it on a terminal window.
  • Ex: node-red-node-watson, node-red-contrib-play-audio, node-red-dashboard, and node-red-node-pidcontrol.
npm install node-red-node-twilio
  • You will need to restart Node-RED for it to pick-up the new nodes.
node-red-stop

node-red-start
  • Close your web browser and reopen the web browser.

Step 9: Adding autostart files for every boot.

Adding autostart files for every boot.

How to make autostart files at every boot.

  • Mosquitto
cd /etc/xdg/autostart/
sudo nano flyMosquitto.desktop

Type the below (this will enclose the file) Or Put ‘flyMosquitto.desktop’ file into autostart folder.

[Desktop Entry] 
Type=Application
Name=flyMosquitto
Comment=Fly my mosquitto
Exec=cd /etc/mosquitto/conf.d/
Exec=mosquitto
  • Node-RED
sudo systemctl enable nodered.service
  • Python JPEG Camera
cd /etc/xdg/autostart/
sudo nano pircameraNodeRED.desktop

Type the description below or put the ‘pircameraNodeRED.desktop’ file into /etc/xdg/autostart/ folder.

[Desktop Entry]
Type=Application
Name=pircameraNodeRED.py
Comment=Start my security camera
NoDisplay=false
Exec=python /home/pi/pythonPir/pircameraNodeRED.py
NotShowIn=GNOME;KDE;XFCE;
Name[en_US]=pircamera.py
  • Image file Server
cd /etc/xdg/autostart/
sudo nano imageFileServer.desktop

Type the description below or put the ‘imageFileServer.desktop’ file into /etc/xdg/autostart/ folder.

[Desktop Entry]
Type=Application 
Name=imageFileServer 
Comment=Start an image file server 
NoDisplay=false 
Exec=cd /home/pi 
Exec=python -m SimpleHTTPServer 7000

Step 10: Testing M2M Communication.

Testing M2M Communication.
Screenshot 2016-10-29 18.29.58.png
IMG_0395.JPG
IMG_0400.JPG

Importing the enclosed files in each NodeRED.

(1) Using a smart JPEG camera

Import the ‘M2M_SmartJPGCamera.txt‘ into the NodeRED of the smart JPEG camera.

(2) Using a smart gas valve

Import the ‘M2M_SmartGasValve.txt‘ into the NodeRED of the smart gas valve.

(3) Check an IP address of the smart gas valve in the Raspberry Pi2.

Type ‘ifconfig’ on a terminal window as shown below.

ifconfig

When you see the IP address, copy the IP address in a terminal window.

(4) Put the IP address into the MQTT node in other Raspberry Pi2.

  1. Click the MQTT node.
  2. Put the IP address into Server.

Step 11: (Optional) Using OpenCV

(Optional) Using OpenCV
Screenshot 2016-11-05 18.11.14.png

Installing & Using OpenCV on Raspberry Pi2

We have already used the IBM Watson Visual Recognition. Watson Visual Recognition is very excellent whereas we can’t use it without connecting wifi. OpenCV is possible to use without internet connection but It’s not very easy for a beginner to install & code into OpenCV. So, I’m going to install the OpenCV.

  • Download ‘opencv-3.1.0.zip from opecv.org
  • Install dependencies
sudo apt-get update
sudo apt-get install build-essential
sudo apt-get install cmake git libgtk2.0-dev pkg-config libavcodec-dev libavformat-dev libswscale-dev python-dev python-numpy libjpeg-dev libpng-dev libtiff-dev libjasper-dev
  • (Optional) Install OpenCV 2
sudo apt-get install python-opencv
  • Install OpenCV 3
unzip ~/Downloads/opencv-3.1.0.zip
cd opencv-3.1.0/
mkdir build
cd build/
cmake -DCMAKE_BUILD_TYPE=Debug -DBUILD_TESTS=NO -DBUILD_PERF_TESTS=NO ..
make -j3
sudo make install
sudo ldconfig
  • Check which version of OpenCV you have in Python
python
import cv2
cv2.__version__
  • Run the simple face detect sample, and look at its code to see how it works:
  • Before, you should connect an USB-cam with Raspberry Pi2
cd /home/pi
cd opencv-3.1.0
python ./facedetect.py

PID Control For CPU Temperature of Raspberry Pi

[ PID Control For CPU Temperature of Raspberry Pi ]

By in raspberry-pi

PID Control For CPU Temperature of Raspberry Pi
2
3
4
5
6
7

Introduction

My motivation for PID Control For CPU Temperature of Raspberry Pi came for many reasons such as very hot CPU, very noisy fan’s sound and fast battery consumption because the hot CPU makes the system really unstable while using Raspberry Pi for a long time. So, I have optimized the failing by using PID node on Node-RED. It’s visually helpful for a trainee to understand the PID control system for an educational purpose.

This will cover the basic steps that you need to follow to get started with open sources like PID node, MQTT node in the Node-RED. Also, it’s really painful and hard to tune 3 gains like KP, KI, and KD as manual tuning(Trial and error) method. There are many tuning methods such as Manual tuning, Ziegler–Nichols, Tyreus Luyben, Cohen–Coon, Åström-Hägglund and Software tools such as Simulink in Matlab or Excel PID Simulator (enclosed). I’ve already provided my source codes in the Download List but If you use a different fan, you should tune PID gains because most physical fan’s characteristics are different. You can get more information from the linked web (PID controller).

MQTT(Message Queueing Telemetry Transport) is a Machine-To-Machine(M2M) or Internet of Things (IoT) connectivity protocol that was designed to be extremely lightweight and useful when low battery power consumption and low network bandwidth is at a premium. It was invented in 1999 by Dr. Andy Stanford-Clark and Arlen Nipper and is now an Oasis Standard. I’ve already published about how to approach the MQTT below the linked webs.

http://www.instructables.com/id/Smart-JPEG-Camera-for-Home-Security/

http://www.instructables.com/id/Smart-Gas-Valve-Checker-for-Home-Safety/

Step 1: Table of Contents

Step 0: Introduction

Step 1: Table of Contents

Step 2: Bill of Materials

Step 3: Setting up an acrylic clear case, a fan with Raspberry Pi

Step 4: Programming NodeRED on Raspberry Pi2

Step 5: Setting up MQTT v3.1 on Raspberry Pi2

Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2

Step 7: Adding & Setting up PID node, Dashboard on Raspberry Pi2

Step 8: Using a dashboard for PID control

Step 9: Tuning PID controller

Step 10: Download list

Step 11: List of references

Step 2: Bill of Materials

Step 3: Setting up an acrylic clear case with a circuited fan with Raspberry Pi

8
9
10
11

Assembly steps

(1) I suggest you should use a breadboard before soldering and wiring all.

(2) Connect the Raspberry Pi2 with a PNP 1015 transistor, a fan, and a variable 102(1k) resistor as shown above in the circuit diagram.

(3) I used a glue gun to attach with the clear case.

(4) Lastly, connect a portable battery with Raspberry Pi2. (Use any portable battery to connect with the same size connector cable on Raspberry Pi2. )

Step 4: Programming NodeRED on Raspberry Pi2

12
13
14

How to start Node-RED on web-browser.

(1) Write down command shown below to a terminal window.

node-red-start

(2) You can find an IP address as below. ‘Once Node-RED has started, point a browser at http://169.254.170.40:1880&#8217; (It depends on your IP address)

(3) Open your web browser.

(4) Copy the IP address and paste on web-browser.

(5) It will display a visual editor of Node-RED on web-browser.

(6) You can start coding with visual editor on web-browser.

(7) Try dragging & dropping any node from the left-hand side to right-hand side. It’s really easy to code. ( You can conveniently use the visual editor offline as well as online. ) Download the ‘PID_Control_For_CPU_TEM_ver0.5.txt’ file. (1) Click the number (1) at the right-hand side corner shown in NodeRED on web-browser. (2) Click the Import button on the drop down menu. (3) Open the Clipboard shown in the above 1st picture. (4) Lastly, paste the given JSON format text of ‘PID_Control_For_CPU_TEM_ver0.5.txt’ in Import nodes editor.

Step 5: Setting up MQTT v3.1 on Raspberry Pi2

Setting up MQTT v3.1 on Raspberry Pi2

This message broker(Mosquitto) is supported by MQTT v3.1 and it is easily installed on the Raspberry Pi and somewhat less easy to configure. Next we step through installing and configuring the Mosquitto broker. We are going to install & test the MQTT “mosquitto” on terminal window.

curl -O http://repo.mosquitto.org/debian/mosquitto-repo.gpg.key
sudo apt-key add mosquitto-repo.gpg.key
rm mosquitto-repo.gpg.key
cd /etc/apt/sources.list.d
sudo curl -O http://repo.mosquitto.org/debian/mosquitto-jessie.list
sudo apt-get update

Next install the broker and command line clients:

  • mosquitto – the MQTT broker (or in other words, a server)
  • mosquitto-clients – command line clients, very useful in debugging
  • python-mosquitto – the Python language bindings
sudo apt-get install mosquitto mosquitto-clients python-mosquitto

As is the case with most packages from Debian, the broker is immediately started. Since we have to configure it first, stop it.

sudo /etc/init.d/mosquitto stop

Now that the MQTT broker is installed on the Pi we will add some basic security.

Create a config file:

cd /etc/mosquitto/conf.d/
sudo nano mosquitto.conf

Let’s stop anonymous clients connecting to our broker by adding a few lines to your config file. To control client access to the broker we also need to define valid client names and passwords. Add the lines:

allow_anonymous false
password_file /etc/mosquitto/conf.d/passwd
require_certificate false

Save and exit your editor (nano in this case).

From the current /conf.d directory, create an empty password file:

sudo touch passwd

We will to use the mosquitto_passwd tool to create a password hash for user pi:

sudo mosquitto_passwd -c /etc/mosquitto/conf.d/passwd pi

You will be asked to enter your password twice. Enter the password you wish to use for the user you defined.

Testing Mosquitto on Raspberry Pi

Now that Mosquitto is installed we can perform a local test to see if it is working: Open three terminal windows. In one, make sure the Mosquitto broker is running:

mosquitto

In the next terminal, run the command line subscriber:

mosquitto_sub -v -t 'topic/test'

You should see the first terminal window echo that a new client is connected.In the next terminal, run the command line publisher:

mosquitto_pub -t 'topic/test' -m 'helloWorld'

You should see another message in the first terminal window saying another client is connected. You should also see this message in the subscriber terminal:

topic/test helloWorld

We have shown that Mosquitto is configured correctly and we can both publish and subscribe to a topic.When you finish testing all, let’s set up below that.

sudo /etc/init.d/mosquitto start

Step 6: Checking your NodeRED codes with MQTT on Raspberry Pi2

15
16
17

1819

When you will use the JSON format of the ‘PID_Control_For_CPU_TEM_ver0.5.txt‘ on Node-RED, it’s automatically set up & coded each data. I have already set up the each data in each node.

(1) Click each node.

(2) Check information inside each node has been prefilled.

(3) Please don’t change the set data. (The above can be customized for more advanced users.)

Step 7: Adding & Setting up PID node, Dashboard on Raspberry Pi2

Searching the Nodes

Node-RED comes with a core set of useful nodes, but there are a growing number of additional nodes available for installing from both the Node-RED project as well as the wider community. You can search for available nodes in the Node-RED library or on the npm repository.

  • For example, we are going to search ‘node-red-node-pidcontrol‘ at the npm web. Click here.
  • Then, we are going to install npm package, node-red-node-pidcontrol, node-red-dashboard on Raspberry Pi.

To add additional nodes you must first install the npm tool, as it is not included in the default installation. The following commands install npm and then upgrade it to the latest 2.x version.

sudo apt-get update
sudo apt-get install npm
sudo npm install -g npm@2.x
hash -r
cd /home/pi/.node-red
  • For example, ‘npm install node-red-{example node name}’
  • Copy the ‘npm install node-red-node-pidcontrol’ from the npm web. Paste it on a terminal window.
  • Ex: node-red-dashboard, and node-red-node-pidcontrol
npm install node-red-node-pidcontrol node-red-dashboard
  • You will need to restart Node-RED for it to pick-up the new nodes.
node-red-stop
node-red-start
  • Close your web browser and reopen the web browser.

Step 8: Using a dashboard for PID control

21
22
23
24
25

The dashboard is a visual UI tool like gauge, chart. There is a basic tutorial of a Node-RED dashboard using node-red-dashboard. http://developers.sensetecnic.com/article/a-node-red-dashboard-using-node-red-contrib-ui/

How to use the dashboard on Raspberry Pi.

(1) Click the number (1) of the gauge node.

(2) Set the group property.

(3) Set the properties from (3) to (7) shown from above the picture.

(4) Click the number (8) to go the dashboard window.

(5) Press the number (9) to display the gauge on the web browser.

(6) You can see the gauge which displays ‘40.1’ from the web browser.

(7) The chart to display on the web browser is same as the gauge (1 – 9 steps).

Step 9: Tuning PID controller

26
27
screenshot-2016-11-14-03-23-03
Screenshot 2016-11-14 23.34.39.png
screenshot-2016-11-14-03-20-28
screenshot-2016-11-18-02-00-28
screenshot-2016-11-14-03-11-13
7

There are many tuning methods such as manual tuning, Ziegler–Nichols, Tyreus Luyben, Cohen–Coon, Åström-Hägglund and software tools such as Simulink in Matlab or Excel PID Simulator(enclosed). I’ve used 2 tuning methods like manual tuning, Ziegler-Nichols method and software tools such as Matlab, Simulink, and Excel. (According to Wikipedia: PID Controller)

  • Manual Tuning(Trial and error)

How do the PID parameters affect system dynamics?

We are most interested in four major characteristics of the closed-loop step response. They are

– Rise Time: the time it takes for the plant output y to rise

– Overshoot: how much the peak level is higher than the steady state, normalized against the steady – state.
– Settling Time: the time it takes for the system to converge to its steady state.

– Steady-state Error: the difference between the steady-state output and the desired output.

(NT: No definite trend. Minor change.)

How do we use the table?

Typical steps for designing a PID controller are Determine what characteristics of the system needs to be improved.

– Use KP to decrease the rise time.

– Use KD to reduce the overshoot and settling time.

– Use KI to eliminate the steady-state error.

– This works in many cases, but what would be a good starting point? What if the first parameters we choose are totally crappy? Can we find a good set of initial parameters easily and quickly?

  • Ziegler–Nichols method

– Ziegler and Nichols conducted numerous experiments and proposed rules for determining values of KP, KI, and KD based on the transient step response of a plant.

– They proposed more than one methods, but we will limit ourselves to what’s known as the first method of Ziegler-Nichols in this tutorial. It applies to plants with neither integrators nor dominant complex-conjugate poles, whose unit-step response resemble an S-shaped curve with no overshoot. This S-shaped curve is called the reaction curve. This S-shaped curve is called the reaction curve.

– The S-shaped reaction curve can be characterized by two constants, delay time L and time constant T, which are determined by drawing a tangent line at the inflection point of the curve and finding the intersections of the tangent line with the time axis and the steady-state level line.

The Ziegler-Nichols Tuning Rule Table

Using the parameters L and T, we can set the values of KP, KI, and KDaccording to the formula shown in the table above.

These parameters will typically give you a response with an overshoot about 25% and good settling time. We may then start fine-tuning the controller using the basic rules that relate each parameter to the response characteristics. KP, KI, and KD based on the transient step response of a plant.

  • PID tuning software

– Matlab: PID Controller Tuning

– Simulink: PID Controller Tuning

– Excel PID simulator

– Etc

  • PID control VS On/Off control

On/Off control: An on-off controller is the simplest form of temperature control device. The output from the device is either on or off, with no middle state. An on-off controller will switch the output only when the temperature crosses the setpoint. For heating control, the output is on when the temperature is below the setpoint, and off above setpoint. Since the temperature crosses the setpoint to change the output state, the process temperature will be cycling continually, going from below setpoint to above, and back below. In cases where this cycling occurs rapidly, and to prevent damage to contactors and valves, an on-off differential, or “hysteresis,” is added to the controller operations. This differential requires that the temperature exceeds setpoint by a certain amount before the output will turn off or on again. On-off differential prevents the output from “chattering” or making fast, continual switches if the cycling above and below the setpoint occurs very rapidly. On-off control is usually used where a precise control is not necessary, in systems which cannot handle having the energy turned on and off frequently, where the mass of the system is so great that temperatures change extremely slowly, or for a temperature alarm. One special type of on-off control used for alarm is a limit controller. This controller uses a latching relay, which must be manually reset, and is used to shut down a process when a certain temperature is reached.

PID control: This controller provides proportional with integral and derivative control, or PID. This controller combines proportional control with two additional adjustments, which helps the unit automatically compensate for changes in the system. These adjustments, integral and derivative, are expressed in time-based units; they are also referred to by their reciprocals, RESET, and RATE, respectively. The proportional, integral and derivative terms must be individually adjusted or “tuned” to a particular system using trial and error. It provides the most accurate and stable control of the three controller types, and is best used in systems which have a relatively small mass, those which react quickly to changes in the energy added to the process. It is recommended in systems where the load changes often and the controller is expected to compensate automatically due to frequent changes in setpoint, the amount of energy available, or the mass to be controlled.

MQTT v3.1의 IoT가스밸브체커 실험

My Instruction Manual:  http://www.instructables.com/id/Smart-Gas-Valve-Checker-for-Home-Safety

YouTube : My demonstration For home safety with automatic voice

YouTube : My demonstration for M2M communication by MQTT

이번주는 사물인터넷의 통신 프로토콜의 하나인 MQTT(Message Queue Telemetry Transport) 통신 실험을 저렴한 라즈베리파이로 이용해보았다. 다음엔 CoAP 프로토콜을 실험할예정이다. 오늘 아침에 이 프로토콜의 사물인터넷 임베디드안에 수 많은 공통 토픽 메시지가 있으면 공통으로 묶어서 보내주고 트래픽잼을 줄이면서 효율적으로 데이타 큐로 처리된다는것을 발견했다. 예를 들면 Publisher(발행자) 가 ‘Hello’ 라는 메시지를 보내면 Subscriber(수령자)가 메시지 Broker(모스키토) 를 통해서 그 메시지를 받는 것이다. 구독하지 않은 토픽과 Subscriber 는 메시지를 받을 수 없다. 나의 가스밸브체커 실험안에  메시지 발행자(Publisher)가 ‘topic/gasvalve’방에 메시지를 발행하면 메시지브로커인(모스키토)가  가스벨브센서 데이타값(o/1)을 받아갈수 있도록 수령자(Subscriber)한테 ‘topic/gasvalve’ 방을 연결해준다. 아주쉽게 말하면 우편배달부(e-mail/p2p)는  아니고 우체국 혹은 게시판 개념과 비슷하다고 볼수있다. 처음에는 이해 못했지만 실제로 실험 해보니깐 조금씩 깨달아갔다.  MQTT는 IBM에 의하면 프로토콜의 장점은 저 전력 소모, 낮은 네트워크 대역폭, 적은 코드작성이다. MQTT 는 1999년에 IBM  Andy Stanford-Clark 가  발명했다. 나는 Andy Stanford-Clark의 TED동영상을 링크할것이다.  Facebook messenger도 이 통신 프로토콜을 사용한다.

Screenshot 2016-10-22 11.18.54.png

AddingPullupResistor4.7kohm.png

나의 가스밸브 체커로 나의 MQTT실험을 Node-RED로 구현한것이다.  제작방법과 코드작성은 너무나 길어서 생략하겠다.  제작 및 코딩방법은 여기 http://www.instructables.com/id/Smart-Gas-Valve-Checker-for-Home-Safety 에 링크했다.

가스밸브이 장착되어있는 마그네틱센서와 가스밸브이다.

gasvv

오픈 소스의 노드레드를 이용해서 MQTT v3.1 을 비주얼 (JavaScript) 프로그래밍했다. 비주얼 프로그래밍이라서 쉬울줄알았는데 생각보다 쉽지않았다. 각 펑션에 자바스크립트로 코딩해야기때문이다. 노드와 노드끼리 잘 연결할수있도록 context.global / context.flow 잘써서 센서 데이타를 전달해주어야기때문에 삽질 정말 많이했다. 약 3주 정도 삽집했었다. ..

mqtt-gas-vv01mqtt-gas-vv02

여기에 메시지 브로커 모스키토가 토픽 3개( ping, cpuTemp, 그리고 gasvalve) 물건(데이타)를 잘전달할수있도록 수령자에 소개해준다.  우편배달부 개념은 아닌것같다.  IBM에서 강의를 들을때 P2P, e-mail 전혀 틀리다고 들었다.  게시판 개념과 비슷하다고 볼수있다.

screenshot-2016-10-19-12-58-16

screenshot-2016-10-24-11-59-13

mqtt-gas-vv_phone-png

mqtt-gas-vv_web

Coding Jarvis in Python in 2016

Gurwinder Gulati's Blog

It’s tough for an erstwhile Iron Man to work on creating their personal AI assistant on the weekends. Like any other time-pressured inventor without a PhD in computer science and linguistics, I decided to use a library for speech recognition and synthesis. Fortunately, Python offers several choices. Unfortunately, many of simply them don’t work any more. I will discuss the ones that are still functional and can be used with Python 2.7 and Python 3 (up to Python 3.5 at the time of writing).

j-a-r-v-i-s My AI assistant is actually a little humbler – I call it Samwise

View original post 440 more words